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Some aspects of flow of
granular materials in hoppers

By Andrew Drescher

Department of Civil Engineering, University of Minnesota,
500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA

The main part of the paper is devoted to the description of the localized deformation
zones in plane (slow) flow of granular materials from hoppers. Specifically, two types
of zones are discussed in detail: material layers, where the particles undergo defor-
mation without crossing the band, and shocks, where the deformation takes place
when the particles cross the band. The fundamental requirements and assumptions
underlying the description of the two types of localized deformation are analysed.
Examples of quasi-static solutions within the framework of plasticity theories are
presented, which demonstrate the possibility of predicting the type of hopper flow
(mass/funnel), and the periodic occurrence of localized deformation zones. Also, the
necessary conditions for a stationary shock taking into account the inertia of particles
crossing the band are derived. It is demonstrated that some hardening is required
for a stationary shock to exist. Lastly, the relevance of an appropriate constitutive
model of granular material for describing the formation of arches and empty channels
which obstruct continuous gravitational flow is addressed.

Keywords: granular materials; hoppers; shear bands; shocks

1. Introduction

Flow of granular materials through storage vessels, and hoppers in particular, has
been the topic of extensive experimental and theoretical research for several decades.
The interest stems from problems encountered in bulk material handling operations,
as well as the fact that the theoretical treatment of flow in hoppers provides a class
of benchmark boundary-value problems for analysing and predicting the behaviour
of granular materials under external mechanical excitations. In fact, the inherent
symmetry of wedge or conical hoppers allows reduction of the number of spatial
variables to two or even one, thereby reducing the number of equations which govern
the behaviour of the material during flow. This, in turn, often permits for solving
these equations analytically, and for comparing the results with physical experiments
or numerical simulations to assess their validity. Accordingly, a significant number of
publications have been devoted to this topic, with the results summarized in bulletins
(Jenike 1964a), monographs (Drescher 1991; Nedderman 1992), and review articles
(Nedderman et al . 1982; Tüzün et al . 1982), to name a few.

When considering flow through hoppers, it is generally assumed that collisional
effects characteristic of rapid flow in chutes can be neglected. Also, the influence
of interstitial gas on particle flow is usually regarded as secondary in comparison
to particle interaction, which allows us to consider one-phase material flow. With
these simplifications, either the methods of continuum mechanics, or the methods
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Figure 1. Shear bands: (a) material layer, (b) shock, (c) material layer/shock.

considering only the kinematics of particles, form the framework of the majority
of theoretical analyses. In the following, the first framework will be employed, and
emphasis will be placed on some aspects of flow that remain challenging or some-
what controversial. More specifically, we will concentrate on non-homogeneities in
the velocity field developing during discharge from hoppers, and on impediments to
continuous flow.

2. Non-homogeneities in flow

It has long been recognized that one of the characteristic features of mass flow of
uniformly packed, rough faceted granular materials in plane (wedge-type) hoppers
is the occurrence of zones of localized deformation in an otherwise continuous field
of flow. These have been given the name shear bands, rupture zones or (strong)
velocity discontinuity lines, and they can be detected using various measuring tech-
niques, notably stereophotogrammetry and radiography. In spite of being frequently
reported, the mechanics of the formation and propagation of these features remains
poorly understood, and only a limited number of theoretical analyses have been
performed to explain and predict their occurrence (Cutress & Pulfer 1967; Pariseau
1969/70; Drescher et al . 1978; Drescher & Michalowski 1984; Michalowski 1984, 1987,
1989, 1990; Pitman 1986). This is in contrast to the vast literature on localized defor-
mation in geotechnical problems, where the bifurcation theory of nonlinear continua
has generally been accepted as the theoretical foundation, with ample experimen-
tal validation and growing implementation in solving boundary-value problems, as
detailed in the monograph by Vardoulakis & Sulem (1995).

The success in understanding and description of the localized deformation in
geotechnical boundary-value problems can be attributed to the fact that most belong
to the class of incipient flow problems. A gradual increase in boundary displacements
resulting from specified velocities, often discontinuous, makes it possible to capture
the conditions for the onset of localization, with the zone of localized deformation
regarded as a material layer. In the case of flow in hoppers, however, localized defor-
mation appears weakly related to the boundary velocities, and it is not always clear
as whether the zone is a material layer or a shock.

The concept of the shear band as a material layer implies a constant mass of mate-
rial simultaneously undergoing the same deformation, as no material leaves or enters
the band. If the material dilates or compacts its density changes, and so does the
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thickness of the band (figure 1a). On the other hand, if the shear band is regarded
as a shock, the same mass of material enters and leaves the band at any instance of
time, and material elements undergo gradual deformation when crossing the band.
This results in density change across the band if the material is dilating or compact-
ing, with the thickness of the band remaining constant during flow (figure 1b). As, in
general, the thickness of the material layer and the shock may be similar, and if the
photographic or radiographic measurements are taken over a short time interval, the
overall appearance of these two fundamentally different features may be similar when
inferred from stereopairs or radiographs (Drescher & Michalowski 1984). It also is
possible that the material outside a sheared material layer is subjected to erosion due
to particle interlocking with the boundaries of the layer moving as shocks (figure 1c),
which leads to mixed, material/shock type bands, and this complicates further the
interpretation of the measurements (Han & Drescher 1993).

The essential element in the analysis of localized deformation bands as shocks is
the requirement for the velocities and densities on both sides of the band to satisfy
the continuity equation derived from the mass conservation law. For a non-moving
shock, the continuity equation can be written as

ρ1v1
n = ρ0v0

n (2.1)

or as

[ρvn] = 0, (2.2)

where ρ is the density, vn is the normal component of the velocity vi, and [·] denotes
the jump in a given quantity; the superscripts ‘0’ and ‘1’ refer to the side ahead and
behind the shock, respectively. As full equivalence exists between flow of material
through a shock or shock moving through the material, equations (2.1) and (2.2)
also hold if the velocity vi is measured with respect to a shock moving with the
speed of propagation vp

i . Alternatively, with the velocities measured with respect to
a stationary system, equation (2.1) becomes

ρ1(v1
n − vp

n) = ρ0(v0
n − vp

n). (2.3)

The first attempts to investigate bands of localized deformation in hoppers hinge
on constructing the kinematic counterpart to the (quasi-) static solution for a rigid-
perfectly plastic, pressure dependent (Mohr–Coulomb or Drucker–Prager) model of
a granular material. This is done by tracing the velocity characteristics net related to
the stress field through the flow rule. As the equations governing the kinematics are
linear, strong velocity discontinuities coinciding with the velocity characteristics are
permissible. The location of discontinuities, and the magnitude of velocity jumps,
can then be determined if the stress field is continuous and the velocity boundary
conditions are known. These are seldom uniquely defined, however, and additional
assumptions are necessary to arrive at a solution. This is because the flow of granular
materials in hoppers is usually driven by gravity and not by prescribed movement of
a boundary, as is the case of extrusion through wedge-shaped dies. Accordingly, the
solutions obtained are used for explaining experimental observations rather than for
predicting the actual pattern or type of flow. This is illustrated clearly in papers by
Pariseau (1969/70) and Michalowski (1984, 1987), with the examples of characteris-
tics net and velocity discontinuities shown in figure 2. A direct numerical integration
of the governing static and kinematic equations has also been performed (Pitman
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Figure 2. Velocity characteristics and velocity discontinuities (Michalowski 1984, 1987).

1986), and shows strong inhomogeneities in the velocity field which can be interpreted
as the occurrence of localized deformation.

It should be noticed that even though these solutions aim at describing advanced
steady flow, the way they are constructed actually corresponds to incipient flow
if the material displays volume changes during shear. In fact, no use is made of
equation (2.2) in relating the density of the material to the velocity jumps across
the discontinuities, and this is reflected in assuming constant bulk unit weight of the
material in constructing the stress field; only when the material is incompressible is
the continuity equation satisfied identically everywhere.

A notable exception, when the solution of the velocity field serves as a criterion
for predicting the type of flow, is the radial (similarity) solution for incompressible
material considered by Jenike (1964b, 1987). This author has demonstrated that in
conical hoppers there exists a critical combination of material effective friction angle
φef , wall friction angle ϕw, and hopper half-included angle θw beyond which the
radial field cannot be constructed. This critical combination was taken as a criterion
limiting the occurrence of mass flow; there is no such a limit, however, for a plane
radial flow.

A mass/funnel flow criterion derived directly from the orientation of shear bands
in hoppers has been proposed by Drescher (1992). Experimental observations of the
onset of flow indicate that in mass flow the shear bands emanating from the edges
of an outlet propagate towards the opposing walls and undergo successive reflections
(figure 3). In funnel flow, on the other hand, the shear bands propagate towards the
adjacent walls. The vertical orientation of the bands, corresponding to plug flow,
then is regarded as separating mass and funnel flow. The analysis of the limiting
plastic state of stress at the wall next to the outlet leads to the following criterion
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Figure 3. Radiograph of reflecting shear bands.

that must be satisfied for mass flow,

tanϕw 6
sinφ cos(2θw − ψ)

1 + sinφ sin(2θw − ψ)
, (2.4)

where φ is the friction angle at shear band initiation, and ψ is the corresponding dila-
tancy angle; the results are shown in figure 4 for ψ = 2/3φ. In deriving equation (2.4)
it was assumed that the shear band coincides with the velocity characteristic. Equa-
tion (2.4) can be modified further, by aligning the shear band along the direction
resulting from the bifurcation analysis which deviates from the direction of a charac-
teristic by (φ− ψ)/4 (Vardoulakis & Sulem 1995); this leads to replacing ψ in (2.4)
by (φ+ ψ)/2.

Plug flow experiments also indicate that with progressing discharge, the vertical
shear bands tend to move laterally outward thus widening the region of flow. This
is seen in radiographs indicating clearly a boundary between the dense and dilated
material (figure 5). As the movement of the boundary seems to be non-periodic, with
the new material continuously entering the region of flow, the band cannot be classi-
fied as a material layer but as a propagating shock. Applying the continuity condition
(2.3) we conclude that particles entering the region of flow must possess a velocity
component directed towards the hopper’s symmetry line. However, no accurate data
on particle velocities are available to illustrate this conclusion, and no analyses have
been performed to describe the corresponding velocity field analytically.

The next approach, presented by Michalowski (1989, 1990), derives from the kine-
matic method of plastic limit analysis. A kinematically admissible velocity field with
straight inextensible bands of localized deformation with constant velocity gradi-
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Figure 4. Regions of mass/funnel flow.

Figure 5. Radiographs of moving shocks in plug flow.

ent is postulated as an approximation of fields often observed in experiments (fig-
ure 6a). The flowing material is assumed to be two-dimensional, rigid-plastic harden-
ing/softening. The location and orientation of shear bands is found from minimizing
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Figure 6. (a) Velocity discontinuities in a bin/hopper; (b) evolution of the yield condition
(Michalowski 1989, 1990).

the rate of energy dissipated on deformation along the band, calculated from the
energy dissipation per unit length of the band of thickness d given by

Ḋ =
∫ d

0
(σε̇σ + τ ε̇τ ) dn, (2.5)

where the strain rates are

ε̇σ =
[v] tanψ

d
, ε̇τ =

[v]
d
, (2.6)

and σ and τ are the mean and deviator stresses, respectively. The stresses satisfy
a piecewise linear yield condition resembling that of the modified Cam clay model
(figure 6b), with the density ρ as a hardening parameter varying across the band
according to

ρ = ρ0
(

1 + tanψ
[v]
v0

n

n

d

)−1

, (2.7)

and with the dilatancy angle ψ defined by the associative flow rule. For a stationary
shock, when material elements cross the band, Ḋ is independent of the band thickness
d. If, however, the band is allowed to move downward, the rate of energy dissipation
depends on the thickness of the band through the time interval during which the
element remains within the moving band. It then follows that a different initial
band thickness d leads to a different rate of energy dissipation in the course of flow.
Note that in all cases, the least energy is dissipated when the material dilates and
softens. Figure 7 shows a comparison of energy dissipation for a stationary and a
moving uppermost band as a function of time, normalized by the velocity modulus
|v0| and initial band length b. It is seen that for a sufficiently thin band, the rate of
energy dissipation when the band is moving is less than when the band is stationary,
and this can be interpreted as likelihood of the formation of material or mixed
type shear bands in flow of granular materials undergoing softening during shear.
Periodicity of band formation can also be deduced from this analysis, and this seems
to be supported by experimental results showing a number of closely spaced bands
(figure 8).
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Figure 7. Energy dissipation as a function of time (Michalowski 1989).

Figure 8. Radiograph of periodic shear bands.

Another approach to analysing localized deformation, under development by Gara-
gash et al . (1998), seeks the necessary conditions on the existence of a shock while
accounting for the inertia during flow. The material is modelled as two-dimensional,
rigid-plastic hardening/softening, with the Mohr–Coulomb yield condition and po-
tential flow rule. The friction angle φ and the dilatancy angle ψ are taken as functions
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Figure 9. Velocity jump across a stationary shock.

of the effective strain γ defined as

γ =
∫ t

0
D dt, (2.8)

where D is the shear intensity of the deformation-rate tensor Dij . Referring to fig-
ure 9, the velocity components vn and vs within an inextensible and stationary shock
(∂/∂s = 0, ∂/∂t = 0) can then be expressed as

vn = v0
nδn, vs = v0

s + v0
nδs, (2.9)

where

δn = exp
(∫ γ

0
sinψ dγ

)
, δs =

∫ γ

0
δn cosψ dγ. (2.10)

Making use of (2.1), we can write the momentum balance law across a shock as
ρ0v0

n[vn] = [σnn], (2.11)

ρ0v0
n[vs] = [σsn]. (2.12)

With the help of the yield condition and flow rule, σnn and σsn can be expressed as
σnn = σ(1− sinφ sinψ), (2.13)
σsn = −σ sinφ cosψ, (2.14)

where σ is the mean stress. Introducing the mean stress Σ normalized by the specific
kinetic energy

Σ =
σ

ρ0|v0|2 (2.15)

we can write equations (2.11) and (2.12) as
δ1
s sin2 θ0 = −[Σ sinφ cosψ], (2.16)

(δ1
n − 1) sin2 θ0 = [Σ(1− sinφ sinψ)], (2.17)
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where θ0 is defined in figure 9, and δ1
s and δ1

s correspond to γ = γ1. Equations (2.16)
and (2.17) relate the mean stress ahead of and behind the shock, Σ0 and Σ1, to
the effective strain γ1 quantifying the total deformation that takes place when the
material crosses the shock. The solution to equations (2.16) and (2.17) depends
on the form of functions φ(γ) and ψ(γ), and boundary conditions. In some cases,
however, it is possible to assess directly the character or the existence of the solution.
For example, when both φ and ψ are constant we arrive from (2.16) and (2.17) at
[Σ] = 0 and γ1 = 0, which implies that no stress and velocity discontinuity is possible
and, hence, no stationary shock can exist in a perfectly plastic material if the flow
is considered as inertial.

When φ(γ) = ψ(γ) (associative material), equations (2.16) and (2.17) reduce to

Σ0 sin 2φ0 = 2 sin2 θ0δ1
s +Σ1 sin 2φ1, (2.18)

sin2 θ0 {(δ1
n − 1) sinφ0 + δ1

s cosφ0} = −Σ1 sin[φ] cosφ1. (2.19)

As the left-hand side of (2.19) is always positive, and the mean stress is always
compressive (Σ < 0), we conclude from (2.19) that a stationary shock may only
exist if

[φ] > 0, (2.20)

i.e. when φ increases with γ and the material is hardening. The dependence of γ1 and
β = θ0 − θ1 on θ0 for several values of Σ is shown in figure 10 for φ = ψ increasing
nonlinearly with γ and reaching an asymptotic value; the dashed line corresponds
to Σ1 → −∞, i.e. to quasi-static flow. Note that for any angle θ0 there are actually
two admissible velocity jumps and two angles β (figure 11), and two sets of curves
depicting the variation of β with θ0, symmetric about θ0 = π/2, exist in figure 10;
however, this is not shown for clarity of presentation.

In the general case of φ(γ) 6= ψ(γ) (non-associative material), equations (2.16) and
(2.17) become

Σ0(1− sinφ0 sinψ0) = {Σ1(1− sinφ1 sinψ1)− sin2 θ0(δ1
n − 1)} (2.21)

sin2 θ0
{

(δ1
n − 1)

sinφ0 cosψ0

1− sinφ0 sinψ0 + δ1
s

}
= −Σ1(1− sinφ1 sinψ1)

[
sinφ cosψ

1− sinφ sinψ

]
,

(2.22)

and a stationary shock may exist if[
sinφ cosψ

1− sinφ sinψ

]
> 0. (2.23)

The interpretation of condition (2.23) follows from a φ versus ψ diagram shown in
figure 12, in which lines are drawn of several constant values of

a = (sinφ cosψ)/(1− sinφ sinψ).

Given initial values of φ0 and ψ0, condition (2.23) is satisfied when φ1 and ψ1 locate
at a higher value of a. It is seen that (2.23) is always satisfied when neither φ
nor ψ are a decreasing function of γ, which characterizes loose granular materials
undergoing hardening with deformation (solid line in figure 13). An example of a
solution for both φ and ψ increasing with γ is shown in figure 14. Again, only one
set of symmetric curves β versus θ0 is shown in figure 14. If, however, φ and ψ
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Figure 10. Solution for φ(γ) = ψ(γ) (associative hardening material).
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Figure 11. Multiple velocity jump solutions (associative material).

Figure 12. Isolines of constant (sinφ cosψ)/(1− sinφ sinψ).

are increasing/decreasing functions of γ, which typify dense materials (dashed line
in figure 13), a stationary shock may or may not be admissible, depending on the
values of φ1 and ψ1 with respect to φ0 and ψ0. The solution for γ1 and β = θ0 − θ1

as a function of θ0 when condition (2.23) is satisfied differs from the case when both
φ and ψ increase with γ only at small angle θ0, and this is depicted in figure 15. The
results above indicate that in medium dense and dense granular materials, stationary
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Figure 13. Function φ(γ) and ψ(γ); solid line, loose material; dashed line, dense material.

shocks should not be observed if significant softening is possible during flow, as may
be the case in mass flow. If the softening is moderate, however, a stationary shock is
admissible, which seems to be illustrated by the propagating boundary of the flowing
region in plug flow shown in figure 5, or the boundary between the central and two
upper regions in mass flow shown in figure 16.

3. Impediments to flow

In the discussion of localized deformation during flow from hoppers, we have tacitly
assumed that the granular material is free-flowing, which typifies uncemented coarse
and medium coarse materials. With the decrease in particle size and with the increase
of compaction, or due to the presence of agents such as moisture, various types of
interparticle bonds may develop and result in particle cementation, with the material
becoming non-free-flowing.

In non-free-flowing materials, self-supported arches or domes may form upon open-
ing of the outlet or at some instance of flow. Continuous discharge may also be
interrupted when an empty channel forms above the outlet, with the surrounding
material remaining at rest. The reason for the formation of these impediments to
flow is the ability of the material to sustain uniaxial or biaxial compression which
develops next to the exposed surface of arches or channels. This fact, first recognized
by Jenike & Leser (1963), has been the basis of several plasticity-based theoretical
analyses aiming at predicting the size of an outlet preventing arching or channelling,
as summarized, for example, by Drescher (1991).

Following Jenike & Leser (1963), most analyses of arching are based on comparing
the strength of the material to the stresses that act in a stable arch or dome. This
is shown schematically in figure 17a, where the variation along the hopper height of
the (uniaxial) compressive strength denoted as σ0, and of the maximum compressive
stress in the arch denoted as σ1a, are superimposed. The location where σ0 = σ1a
defines the minimum outlet size preventing arching. The stresses in the arch are
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Figure 14. Solution for φ(γ) 6= ψ(γ) (non-associative hardening material).

derived from the analysis of statically determined structural members, which implies
that no material parameters other than the unit weight and wall friction angle enter
the derivation of the weight-induced stresses, and the latter are a linear function of
the distance r. The compressive strength is determined from tests, and subsequently
related to stresses σc that act during flow and consolidate the material. The con-
solidating stresses, again, are taken as a linear function of r, i.e. the radial solution
using the local or the global equilibrium equations is postulated for the stresses.
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Figure 15. Comparison of solutions for φ(γ) 6= ψ(γ); solid line, hardening material; dashed line,
hardening/softening material.

The underlying basis of material strength and flow stresses is the rigid-hardening/
softening plastic model of Jenike & Shield (1959), conceptually similar to the well-
known Cam clay model devoid of elasticity. The central element of these models is
the ultimate or critical state, where the material displays purely frictional resistance,
and this state is assumed for evaluating the stresses during flow. The instantaneous
or current yield surface is a function of consolidating stress σc, and this defines the
relation between σ0 and σc termed the flow function FF (figure 17b). The consequence
of this model is that σ0 = 0 if σc = 0, i.e. the material has no strength if the
consolidating stresses are null. This implies that the magnitude of σ0 must approach
the magnitude of σ1a at r = 0 (figure 17a). Due to experimental difficulties in
conducting tests at very low consolidating stresses that are typical for hoppers, the
shape of the FF close to the origin is extrapolated from tests at higher stresses rather
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Figure 16. Radiograph of moving shocks in mass flow.

Figure 17. (a) Distribution of strength and arch-stresses in a hopper; (b) flow-function.

than determined directly. As discussed by Drescher et al . (1995a, b), extrapolations
which lead to a non-zero compressive strength at σc = 0 (figure 16b) are inconsistent
with the model assumed, for they violate the concept of a purely frictional critical
state which, on the other hand, is the mandatory requirement for the existence
of the radial solution for the flow stresses σc. These extrapolations are equivalent
to postulating a consolidation-independent material cohesion or residual cohesion
even at large shearing deformation. This concept, put forward by Molerus (1978),
has not found application in modelling the behaviour of soils. It has been used by
Enstad (1981), however, who arrived at the critical outlet size by considering global
equilibrium of the material filling the hopper with no support from below. It appears
that the issue of material strength at large shearing deformation characteristic for
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the flow in hoppers remains somewhat unresolved when analysing the impediments
to flow.

4. Closing remarks

In discussing non-homogeneities in the flow of granular materials we have concen-
trated on plane or wedge-type hoppers. This is because detecting material shear
bands or shocks in conical hoppers is technically difficult, and insufficient reliable
experimental data exist for further theoretical studies. Although not well docu-
mented, there are also indications that in the flow through conical hoppers fewer
zones of localized deformation form or are altogether absent. A qualitatively similar
result has been obtained by Pitman (1986) in studying the convergence of the radial
stress field in plane and conical hoppers; in conical hoppers the convergence is faster,
and in plane hoppers oscillations in the mean stress are more apparent. As the veloc-
ity field is related to the stress field, this could be interpreted as a greater chance
of localized deformations in plane hoppers. A greater instability in the evolution
equations governing plastic flow in plane strain problems has also been discussed by
Schaeffer (1987, 1990). We should mention here that strong velocity discontinuities
may be inadmissible in some axisymmetric problems for rigid-perfectly plastic mate-
rials as illustrated by Shield (1955) and Cox et al . (1961), whereas they are always
admissible in plane strain problems. All this points to possible significant differences
in the mechanics of flow in conical and plane hoppers; unfortunately, most advanced
studies have only considered the latter.

It seems that central in predicting possible formation of arches and empty channels
in hoppers is the determination of an appropriate constitutive model of the material,
which would resolve the issue of material strength (yield limit) as a function of
consolidating stresses and large shearing deformation taking place during flow. This
is related directly to necessary progress in measuring material response under small
stress levels typical for hoppers.

The author expresses his gratitude to the Shimizu Corporation for supporting his research.
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